Search results

Search for "solid lipid nanoparticles (SLNs)" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies

  • Giuliana Muraca,
  • María Esperanza Ruiz,
  • Rocío C. Gambaro,
  • Sebastián Scioli-Montoto,
  • María Laura Sbaraglini,
  • Gisel Padula,
  • José Sebastián Cisneros,
  • Cecilia Yamil Chain,
  • Vera A. Álvarez,
  • Cristián Huck-Iriart,
  • Guillermo R. Castro,
  • María Belén Piñero,
  • Matias Ildebrando Marchetto,
  • Catalina Alba Soto,
  • Germán A. Islan and
  • Alan Talevi

Beilstein J. Nanotechnol. 2023, 14, 804–818, doi:10.3762/bjnano.14.66

Graphical Abstract
  • efficiently. Many developments have been made in the past years resulting in lipid formulations such as liposomes, solid lipid nanoparticles (SLNs), and nanoemulsions, which increased the apparent solubility of BNZ and its efficacy against parasites [17]. Remarkably, oil-in-water nanoemulsions improved the
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2023

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • the survival time of mice when loaded with paclitaxel. Thus, this formulation could be a promising drug delivery system for antitumor therapy. Solid lipid nanoparticles: Solid lipid nanoparticles (SLNs) are particles with a solid lipid core at room and body temperature [27]. SLNs can be prepared with
PDF
Album
Review
Published 04 Jun 2020

BergaCare SmartLipids: commercial lipophilic active concentrates for improved performance of dermal products

  • Florence Olechowski,
  • Rainer H. Müller and
  • Sung Min Pyo

Beilstein J. Nanotechnol. 2019, 10, 2152–2162, doi:10.3762/bjnano.10.208

Graphical Abstract
  • inclusion; nanostructured lipid carriers (NLCs); penetration enhancement; skin occlusion; SmartLipids; solid lipid nanoparticles (SLNs); Introduction To meet the increasing expectations and demands of consumers in personal care and cosmetics, as well of patients in medical care, dermal delivery systems are
  • , ethosomes, transfersomes, pharmacosomes, herbosomes, colloidosomes, sphinosomes and cubosomes [3]. A step forward in 1991 was the development of a carrier made from solid lipids, the solid lipid nanoparticles (SLNs). They are derived from the emulsions by replacing the liquid lipid (oil) with a solid lipid
PDF
Album
Review
Published 04 Nov 2019

Lipid nanostructures for antioxidant delivery: a comparative preformulation study

  • Elisabetta Esposito,
  • Maddalena Sguizzato,
  • Markus Drechsler,
  • Paolo Mariani,
  • Federica Carducci,
  • Claudio Nastruzzi,
  • Giuseppe Valacchi and
  • Rita Cortesi

Beilstein J. Nanotechnol. 2019, 10, 1789–1801, doi:10.3762/bjnano.10.174

Graphical Abstract
  • lipid carriers (NLCs); retinoic acid; skin pollution; solid lipid nanoparticles (SLNs); Introduction Air pollution increasingly affects industrialized urban areas in a negative manner with dramatic consequences for the environment and human health. This problem also affects rural areas, worsening the
  • -actin. The results are shown as the mean of three experiments. * p < 0.05 with respect to the control. Composition of solid lipid nanoparticles (SLNs). Composition of nanostructured lipid carriers (NLCs). Composition of antioxidant-containing NLCs. Dimensional characteristics of SLNs or NLCs and the
  • effects when employed in high dosage [24][25]. Thus, TOC and RA need to be loaded in specialized formulations suitable for skin application and able to adequately protect them from degradation. In this respect, recently different lipid nanoparticles have been proposed, including solid lipid nanoparticles
PDF
Album
Full Research Paper
Published 29 Aug 2019

Nanoporous smartPearls for dermal application – Identification of optimal silica types and a scalable production process as prerequisites for marketed products

  • David Hespeler,
  • Sanaa El Nomeiri,
  • Jonas Kaltenbach and
  • Rainer H. Müller

Beilstein J. Nanotechnol. 2019, 10, 1666–1678, doi:10.3762/bjnano.10.162

Graphical Abstract
  • solution, because the application of simple suspensions to the skin normally does not provide a sufficient dermal bioavailability. Classic delivery systems such as liposomes [3] or solid lipid nanoparticles (SLNs) [4][5] do not work because the active agents do not dissolve in the lipidic phase of these
PDF
Album
Full Research Paper
Published 08 Aug 2019
Other Beilstein-Institut Open Science Activities